$$\frac{d(e^x)}{dx} = e^x.$$

In other words, e is the real number such that the constant

$$st \left\lceil \frac{e^{\Delta x} - 1}{\Delta x} \right\rceil = 1$$

(where Δx is a nonzero infinitesimal). It will be shown in Section 8.3 that there is such a number e and that e has the approximate value

$$e \sim 2.71828$$
.

The function $y = e^x$ is called the *exponential function*. e^x is always positive and follows the rules

$$e^{a+b} = e^a \cdot e^b$$
, $e^{a \cdot b} = (e^a)^b$, $e^0 = 1$.

Figure 2.5.7 shows the graph of $y = e^x$.

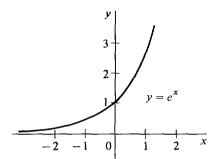


Figure 2.5.7

EXAMPLE 3 Find the derivative of $y = x^2 e^x$. By the Product Rule,

$$\frac{dy}{dx} = x^2 \frac{d(e^x)}{dx} + e^x \frac{d(x^2)}{dx} = x^2 e^x + 2xe^x.$$

3 THE NATURAL LOGARITHM

The inverse of the exponential function $x = e^y$ is the natural logarithm function, written

$$y = \ln x$$
.

Verbally, $\ln x$ is the number y such that $e^y = x$. Since $y = \ln x$ is the inverse function of $x = e^y$, we have

$$e^{\ln a} = a$$
, $\ln (e^a) = a$.

The simplest values of $y = \ln x$ are

$$ln(1/e) = -1, ln(1) = 0, ln e = 1.$$

Figure 2.5.8 shows the graph of $y = \ln x$. It is defined only for x > 0.

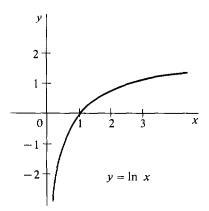


Figure 2.5.8

The most important rules for logarithms are

$$\ln (ab) = \ln a + \ln b,$$

$$\ln (a^b) = b \cdot \ln a.$$

The natural logarithm function is important in calculus because its derivative is simply 1/x,

$$\frac{d(\ln x)}{dx} = \frac{1}{x}, \qquad (x > 0).$$

This can be derived from the Inverse Function Rule.

If
$$y = \ln x,$$
then
$$x = e^{y},$$
$$\frac{dx}{dy} = e^{y},$$
$$\frac{dy}{dx} = \frac{1}{dx/dy} = \frac{1}{e^{y}} = \frac{1}{x}.$$

The natural logarithm is also called the logarithm to the base e and is sometimes written $\log_e x$. Logarithms to other bases are discussed in Chapter 8.

EXAMPLE 4 Differentiate
$$y = \frac{1}{\ln x}$$
.
$$\frac{dy}{dx} = \frac{-1}{(\ln x)^2} \frac{d(\ln x)}{dx} = -\frac{1}{x(\ln x)^2}.$$

4 SUMMARY

Here is a list of the new derivatives given in this section.

$$\frac{d(\sin x)}{dx} = \cos x.$$

$$\frac{d(\cos x)}{dx} = -\sin x.$$

$$\frac{d(e^x)}{dx} = e^x.$$

$$\frac{d(\ln x)}{dx} = \frac{1}{x} \quad (x > 0).$$

Tables of values for $\sin x$, $\cos x$, e^x , and $\ln x$ can be found at the end of the book.

PROBLEMS FOR SECTION 2.5

In Problems 1-20, find the derivative.

1	$y = \cos^2 \theta$	2	$s = \tan^2 t$
3	$y = 2\sin x + 3\cos x$	4	$y = \sin x \cdot \cos x$
5	$w = \frac{1}{\cos z}$	6	$w = \frac{1}{\sin z}$
7	$y = \sin^n \theta$	8	$y = \tan^n \theta$
9	$s = t \sin t$	10	$s = \frac{\cos t}{t - 1}$
11	$y = xe^x$	12	$y=1/(1+e^x)$
13	$y = (\ln x)^2$	14	$y = x \ln x$
15	$y = e^x \cdot \ln x$	16	$y = e^x \cdot \sin x$
17	$u = \sqrt{v(1 - e^v)}$	18	$u = (1 + e^{v})(1 - e^{v})$
19	$y = x^n \ln x$	20	$y = (\ln x)^n$

In Problems 21-24, find the equation of the tangent line at the given point.

21	$y = \sin x \text{ at } (\pi/6, \frac{1}{2})$	22	$y = \cos x \text{ at } (\pi/4, \sqrt{2/2})$
23	$y = x - \ln x \text{ at } (e, e - 1)$	24	$y = e^{-x}$ at $(0, 1)$

2.6 CHAIN RULE

The Chain Rule is more general than the Inverse Function Rule and deals with the case where x and y are both functions of a third variable t.

Suppose
$$x = f(t), \quad y = G(x).$$

Thus x depends on t, and y depends on x. But y is also a function of t,

$$y = g(t)$$

where g is defined by the rule

$$g(t) = G(f(t)).$$

The function g is sometimes called the *composition* of G and f (sometimes written $g = G \circ f$).