5th Homework Due Day 20 (Oct. 27)

David Milovich

October 27, 2015

Definition

- 1. Given a sequence $\{a_n\}$ and a real U, we say that U is an eventual upper bound of $\{a_n\}$ if $a_n \leq U$ for $n \gg 1$.
- 2. Given a sequence $\{a_n\}$ and a real U, we say U is an *upper limit* of $\{a_n\}$ if, for every $\varepsilon > 0$, $U + \varepsilon$ is an eventual upper bound of $\{a_n\}$ and $U \varepsilon$ is not an eventual upper bound of $\{a_n\}$.

Use the above definition of upper limit for exercises 1 and 2.

Exercises

- 1. (a) Prove that if A and B are upper limits of $\{a_n\}$, then A=B.
 - (b) Prove that if $a_n \to L$, then L is the upper limit of $\{a_n\}$.
 - (c) Prove that if $\{a_n\}$ is bounded, then it has an upper limit. (Hint: the upper limit is the greatest lower bound of a certain set...)
- 2. (a) Prove that if U is a positive eventual upper bound of $\{\sqrt[n]{|a_n|}\}$ and |x|<1/U, then $\sum |a_nx^n|$ converges.
 - (b) Prove if if U > 0, U is not an eventual upper bound of $\{\sqrt[n]{|a_n|}\}$, and |x| > 1/U, then $a_n x^n \neq 0$.
 - (c) Prove that if U is a positive upper limit of $\{\sqrt[n]{|a_n|}\}$, then $\sum a_n x^n$ has radius of convergence 1/U.
- 3. (a) Prove by induction that if $k \in \mathbb{N}$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$ converges absolutely, then $\sum_{n=0}^{\infty} b_n^{(k)} x^n$ converges to $g(x)^k$ and converges absolutely where $b_n^{(m)}$ is recurvisely defined for all $m, n \in \mathbb{N}$ by $b_0^{(0)} = 1$, $b_n^{(0)} = 0$ if n > 0, and

$$b_n^{(m+1)} = b_0^{(m)} b_n + b_1^{(m)} b_{n-1} + b_2^{(m)} b_{n-2} + \dots + b_{n-2}^{(m)} b_2 + b_{n-1}^{(m)} b_1 + b_n^{(m)} b_0.$$

(b) Prove that if $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has infinite radius of convergence, and $g(x) = \sum_{n=0}^{\infty} b_n x^n$ has positive radius of convergence R, then, for each $n \in \mathbb{N}$, the series $\sum_{m=0}^{\infty} a_m b_n^{(m)}$ coverges absolutely and, for all $x \in (-R, R)$, $\sum_{n=0}^{\infty} c_n x^n$ converges to f(g(x)) and converges absolutely, where $c_n = \sum_{m=0}^{\infty} a_m b_n^{(m)}$.